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Abstract

Some quantitative estimates concerning multi-dimensional rotundity, weak noncompactness, and certain
spectral inequalities are formulated for Lions–Schechter’s complex methods of interpolation with derivatives.
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The theory of the complex interpolation methods owes its origin to the famous interpolation
theorem of Riesz–Thorin [3, Theorem 1.1.1]. Some fundamental inequalities due to Calderón
[3, Lemma 4.3.2] imply that the boundedness of linear operators can be interpolated between
Banach spaces with a logarithmically convex estimate for the norms of the interpolated operators.
This motivated several authors to investigate the behavior of other properties of Banach spaces
and linear operators under interpolation in both qualitative and quantitative way. For instance,
Salvatori and Vignati obtained the estimate for multi-dimensional rotundity [11], Kryczka and
Prus studied the measure of weak noncompactness [9], and Albrecht and Müller formulated some
spectral inequalities under the complex interpolation methods [2].

In the present paper, we treat the similar problems for the more general Lions–Schechter’s
methods of complex interpolation with derivatives. In the first section, we review the different
variants of these methods and formulate some basic inequalities. Section 2 includes the estimate
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for multi-dimensional rotundity of Banach spaces. Section 3 is devoted to the measure of weak
noncompactness and spectral inequalities for bounded linear operators.

We use standard interpolation theory notation as can be found in [3]. Let X = (X0, X1) be a
Banach couple with �X = X0 ∩ X1 and �X = X0 + X1, and let X be an intermediate space
for Banach couple X = (X0, X1), we denote by X0 the regularization for X, by X′ the Banach
space dual of X0, and write the dual couple X

′ = (X′
0, X

′
1

)
. For two Banach spaces X and Y, we

denote by B(X, Y ) the Banach space of all bounded linear operators from X to Y equipped with
the operator norm. For two Banach couples X and Y , we denote by B (X, Y

)
the Banach space

of all bounded linear operators T from X to Y , for which T ∈ B(Xj , Yj ) with the norm
∥∥T ∥∥

j

(j = 0, 1), and∥∥T ∥∥
X,Y

= ∥∥T ∥∥0 ∨ ∥∥T ∥∥1.
Here �∨� = max

{
�, �
}

for �, � ∈ R. We simply write B(X) = B(X,X) and B (X ) = B (X, X
)
.

Throughout the paper, the notations ⊆ and = between Banach spaces stand for continuous inclu-
sion and isomorphic equivalence, respectively.

1. On variants of Lions–Schechter’s interpolation methods

For a Banach couple X on the strip S = {z ∈ C
∣∣ 0�Re z�1

}
, let Ab

(
S, X
)

be the Banach
space of all continuous functions f : S −→ �X, where f is analytic in the interior of S and, for
j = 0, 1, the function t �→ f (j + it) is boundedly continuous from R to Xj . This space is
equipped with the norm

∥∥f ∥∥∞ = max
j=0,1

{
sup
t∈R

∥∥f (j + it)
∥∥

j

}
for f ∈ Ab

(
S, X
)
. The complex interpolation spaces with nth derivative at �, where n ∈ N and

0 < � < 1, is defined in the following way:

C�(n)

(
X
) = {x ∈ �X

∣∣∣∣ x = 1

n!
(

−2 sin ��

�

)n

f (n)(�), f ∈ Ab
(
S, X
)}

with the norm
∥∥x∥∥

C�(n)
= inf
{∥∥f ∥∥∞ ∣∣∣ x = 1

n!
(
− 2 sin ��

�

)n
f (n)(�)

}
, and

C�(−n)

(
X
) = {x ∈ �X

∣∣∣ x = f (�), f ∈ Ab
(
S, X
)
, f (k)(�) = 0, 1�k�n

}
with the norm

∥∥x∥∥
C�(−n)

= inf
{∥∥f ∥∥∞ ∣∣∣ x = f (�)

}
. In particular, we set

C�
(
X
) = C�(0)

(
X
)
.

For 0 < � < 1 and n�1, we define submultiplicative functions ��,n on R+ by

��,1(t) = t�

⎛⎝√1 +
(

sin ��

�
| log t |
)2

+ sin ��

�
| log t |
⎞⎠
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and

��,n(t) = t�
(

1 + �(1 − �)

n
| log t |
)n

if n�2.

In addition, we set

��,n(0) = lim
t→0+ ��,n(t) = 0.

The corresponding homogeneous function of two variables (again denoted by ��,n) is given by
(t0, t1) �−→ t0��,n (t1/t0) for t0, t1 > 0. It is clear

��,1
(
t0, t1
) = t1−�

0 t�1

⎛⎝√1 +
(

sin ��

�

∣∣∣∣log
t1

t0

∣∣∣∣)2

+ sin ��

�

∣∣∣∣log
t1

t0

∣∣∣∣
⎞⎠ ,

and

��,n

(
t0, t1
) = t1−�

0 t�1

(
1 + �(1 − �)

n

∣∣∣∣log
t1

t0

∣∣∣∣)n

if n�2.

The C�(±n)-methods are of interpolation type ��,n in the sense that the inequality∥∥T ∥∥
C�(±n)(X),C�(±n)(Y )

�c ��,n

(∥∥T ∥∥0, ∥∥T ∥∥1) (1.1)

holds for all Banach couples X, Y , and for all operators T ∈ B(X, Y
)
, where c is a constant

only depending on � and n. Specially, c = 1 for n = 1. Furthermore, for 0 < �0, �1, � < 1 with
�0 < � < �1, � = (1 − �)�0 + ��1 and for k = 1, 2, . . . , we have reiterations

C�(±n)

(
X
) = C�(±n)

(
C�0

(
X
)
, C�1

(
X
))

(1.2)

by [7, Remark 5.8], and

C�(−n)

(
C�0(−k)

(
X
)
C�1(−k)

(
X
)) ⊆ C�(−n−k)

(
X
)

(1.3)

by [5, Theorem 5.1].
Some variants of the C�(n)-methods on the unit disk D = {z ∈ C

∣∣ |z|�1
}

are systematically
developed in [7] and [6]. Let

I�
0 = [−�(1 − �), �(1 − �)

)
, I �

1 = [�(1 − �), �(1 + �)
)
.

We denote by A�
(
D, X
)

the Banach space of all functions f : D −→ �X, where f is analytic in

the interior of D and, for j = 0, 1, the function t �→ f (eit ) is continuous from I�
j to Xj , with the

norm ∥∥f ∥∥A�
= max

j=0,1
sup
{ ∥∥f (eit )

∥∥
j

∣∣∣ t ∈ I�
j

}
.

Let P
(
D, �X
)

be the set of all polynomials on D with coefficients in �X. We denote by H1
�

(
D, X
)

the Banach space completion of P
(
D, �X
)

with the norm

∥∥f ∥∥H1
�

=
(

1

2�(1 − �)

∫
I �

0

∥∥∥f (eit
)∥∥∥

0
dt

)
∨
(

1

2��

∫
I �

1

∥∥∥f (eit
)∥∥∥

1
dt

)
.
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We mention here that the corresponding spaces in [6] should also be defined in this way. Now we
introduce

CD�(n,∞)

(
X
) = {x ∈ �X

∣∣∣∣ x = f̂ (n) = 1

n!f
(n)(0), f ∈ A�

(
D, X
)}

with the norm
∥∥x∥∥

CD�(n,∞)
= inf
{∥∥f ∥∥A�

∣∣∣ x = f̂ (n)
}

, and

CD�(−n,∞)

(
X
) = {x ∈ �X

∣∣∣ x = f (0), f ∈ A�
(
D, X
)
, f̂ (l) = 0, 1� l�n

}
with the norm

∥∥x∥∥
CD�(−n,∞)

= inf
{∥∥f ∥∥A�

∣∣∣ x = f (0)
}

. Similarly, the spaces CD�(±n,1)

(
X
)

are

defined by replacing A�
(
D, X
)

with H1
�

(
D, X
)
. The equivalence

C�(n)

(
X
) = CD�(n,1)

(
X
) = CD�(n,∞)

(
X
)

(1.4)

for n ∈ Z follows by the conformal mapping m�: S −→ D, for which

m�(z) = exp
(
i�(z − �)

)− 1

exp(−i��) − exp(i�z)
for z ∈ S.

For n = 0, the equivalence in (1.4) is isometric. For n = 1, we have the norm estimate

∥∥x∥∥
CD�(±1,1)

= ∥∥x∥∥
C�(±1)

�
∥∥x∥∥

CD�(±1,∞)
� 3

√
3

4

∥∥x∥∥
CD�(±1,1)

by [7, Theorem 5.2]. For n > 1, the equivalence constants appearing in (1.4) only depend on �
and n. Moreover, if X0 or X1 is reflexive, then the duality

CD�(±n,1)

(
X
)′ = CD�(∓n,∞)

(
X

′)
(1.5)

holds true with the isometric norms.
We conclude this section by some basic inequalities for the CD�(±n,1) methods, which will

play a key role in the proof of our results concerning various quantitative estimates under Lions–
Schechter’s complex interpolation. Let f ∈ H1

�

(
D, X
)
. Then there exists h ∈ H1

�

(
D, X
)

with

ĥ(l) = f̂ (l), for 0� l�n, such that

∥∥h∥∥H1
�
���,1

(
1

2�(1 − �)

∫
I �

0

∥∥∥f (eit
)∥∥∥

0
dt,

1

2��

∫
I �

1

∥∥∥f (eit
)∥∥∥

1
dt

)
, (1.6)

and

∥∥h∥∥H1
�
�3n��,n

(
1

2�(1 − �)

∫
I �

0

∥∥∥f (eit
)∥∥∥

0
dt,

1

2��

∫
I �

1

∥∥∥f (eit
)∥∥∥

1
dt

)
(1.7)

for n�2. We refer to [6, Lemma 2.1] for the proof of these inequalities.
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2. On multi-dimensional rotundity of Banach spaces

Let X be a Banach space, and let x� ∈ X for 0���k. The k-dimensional volume enclosed by
x0, x1, . . . , xk is described by

VX

({x�}
) = sup

x∗
� ∈X′,‖x∗

� ‖X′ �1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣∣∣∣∣∣∣∣∣

1 · · · 1
〈x∗

1 , x0〉 · · · 〈x∗
1 , xk〉

...
. . .

...

〈x∗
k , x0〉 · · · 〈x∗

k , xk〉

∣∣∣∣∣∣∣∣∣

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

The modulus of k-rotundity of X is defined as follows:

	(k)
X (
) = inf

{
1 −
∥∥∥∥x0 + x1 + · · · + xk

k + 1

∥∥∥∥
X

∣∣∣∣ ∥∥x�
∥∥

X
�1, VX

({
x�
})

�


}
for 0�
�(k + 1)(k+1)/2. The space X is k-uniformly rotund (k-UR in short), or equivalently
k-uniformly convex, if 	(k)

X (
) > 0 for 
 > 0. The characteristic of k-convexity of X is defined by


̂(k)
X = inf

{


∣∣ 	(k)

X (
) > 0
}
.

Lemma 2.1. Assume that X0 or X1 is reflexive. Let X = CD�(1,1)

(
X
)
, and let x0, . . . , xk ∈ X.

If x� = f ′
�(0) for some f� ∈ H1

�

(
D, X
)
, 0���k, then

VX

({x�}
)

� �1,�

⎛⎝( 1

2�(1 − �)

∫
I �

0

VX0

({
f�(e

it )
})

dt

)1/k

,

(
1

2��

∫
I �

1

VX1

({
f�(e

it )
})

dt

)1/k
⎞⎠k

.

Proof. Let � > 0 fixed. By duality (1.5), we may choose gm ∈ A�
(
D, X

′ )
, 1�m�k, with norms

�1 satisfying x∗
m = (1 + �)gm(0), g′

m(0) = 0, and

VX

({x�}
)
�V
({x�, x

∗
m}),

where

V
({x�, x

∗
m}) =
∣∣∣∣∣∣∣∣∣

1 · · · 1
〈x∗

1 , x0〉 · · · 〈x∗
1 , xk〉

...
. . .

...

〈x∗
k , x0〉 · · · 〈x∗

k , xk〉

∣∣∣∣∣∣∣∣∣ .
Let now

V
(· ; {f�, gm}) =

∣∣∣∣∣∣∣∣∣
1 · · · 1

〈g1, f0〉 · · · 〈g1, fk〉
...

. . .
...

〈gk, f0〉 · · · 〈gk, fk〉

∣∣∣∣∣∣∣∣∣ .



M. Fan / Journal of Approximation Theory 140 (2006) 46–60 51

Then V
(· ; {f�, gm}) ∈ H1(D) with

V
({x�, x

∗
m}) = (1 + �)kV

(
0; {f ′

�, gm}) = (1 + �)kV ′(0; {f�, gm}),
which implies that

V
({x�, x

∗
m}) = (1 + �)k

∫ 2�

0
e−itV
(
eit ; {f�, gm}) dt.

For t ∈ I�
j (j = 0, 1), let 
j (t) = VXj

({
f�(e

it )
})

, and let

M0 =
(

1

2�(1 − �)

∫
I �

0


0(t) dt

)1/k

and M1 =
(

1

2��

∫
I �

1


1(t) dt

)1/k

.

As in the proof of [6, Lemma 2.1], there exist �, 
 ∈ H∞(D) such that

�(0) = 0, �′(0) = sin ��

�
log
(
M1
/
M0
)
,

∥∥�∥∥∞ =
√

1 +
(

sin ��

�

∣∣∣∣log
M1

M0

∣∣∣∣)2

+ sin ��

�

∣∣∣∣log
M1

M0

∣∣∣∣ ,
and ∣∣∣exp

(−
(eit )
)∣∣∣ = (M0

M1

)j−�

for t ∈ I�
j (j = 0, 1).

Furthermore, let hm = � · exp(−
) · gm, 1�m�k. Then hm ∈ H1
�

(
D, X
)′ with (1 + �)hm(0) =

(1 + �)gm(0) = x∗
m, h′

m(0) = 0 and

sup
t∈I �

j

∣∣hm(eit )
∣∣�M−1

j ��,1
(
M0, M1

)
(j = 0, 1).

Consequently,

V
({x�, x

∗
m}) = (1 + �)k

∫ 2�

0
e−itV
(
eit ; {f�, hm}) dt,

and hence

VX

({x�}
)
�V
({x�, x

∗
m})�(1 + �)k��,1

(
M0, M1

)k
.

We complete the proof by letting � → 0. �

Lemma 2.2. Let � and 
 be concave and increasing functions defined on [0, 1) with �(0) =

(0) = 0. If s, t, u ∈ (0, 1) with u���,1

(
s1/k, t1/k

)k , then

��,1
(
�(1 − s)1/k, 
(1 − t)1/k

)
�c1/k ��,1

(
�(1 − u)1/k, 
(1 − u)1/k

)
,
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where

c = 1

1 − �1

((
1 − �1

�0

)�0

∨
(

1 − �1

�0

)�1
)

for �0 = � − sin ��
/
� and �1 = � + sin ��

/
�.

Proof. It is clear that 0 < �0 < �1 < 1. Observe that, for s, t > 0,

��,1(st)�
(
s�0 ∨ s�1

)
��,1(t).

If s� t , then

u�s��,1

((
t/s
)1/k
)k

�s1−�1 t�1 �(1 − �1)s + �1t,

and hence 1 − u�(1 − �1)(1 − s) + �1(1 − t). This implies that

�(1 − u) � (1 − �1)�(1 − s) + �1�(1 − t) � (1 − �1)�(1 − s),


(1 − u) � (1 − �1)
(1 − s) + �1
(1 − t) � �1
(1 − t) � �0
(1 − t).

Similarly, if s� t , then we have

�(1 − u)�(1 − �0)�(1 − s)�(1 − �1)�(1 − s) and 
(1 − u)��0
(1 − t).

Therefore,

��,1
(
�(1 − s)1/k, 
(1 − t)1/k

)
���,1

((
�(1 − u)

/
(1 − �1)

)1/k
,
(

(1 − u)

/
�0
)1/k
)

�c1/k ��,1
(
�(1 − u)1/k, 
(1 − u)1/k

)
,

which completes the proof. �

Given two nonnegative functions f, g defined on an interval [0, c), we denote f � g (or g ≺ f )
if there exist positive constants �, � such that f (t)��g(�t) for t small enough. We now state the
main result of this section.

Proposition 2.1. If X0 or X1 is k-UR, then X = CD�(±1,1)

(
X
)

is also k-UR. Moreover, if we

set 	j = 	(k)
Xj

be the modulus of k-rotundity of Xj (j = 0, 1), then the modulus of k-rotundity

	X = 	(k)
X of X satisfies

(i) 	X(
) � 1 −
(

1 − 	0
(

1/(1−�1)

))1−�1
when X0 is k-UR;

(ii) 	X �
(
��,1

((
	−1

0

)1/k
,
(
	−1

1

)1/k
)k)−1

when both X0 and X1 are k-UR.

Proof. We prove the proposition for the space X = CD�(1,1)

(
X
)
. The other case can be treated

in an analogous way. By [11, Proposition 1], we may assume that 	j is a convex function and

is strictly increasing when Xj is k-UR. Let 0 < 
 < (k + 1)(k+1)/2, and let x0, . . . , xk ∈ X with∥∥x�
∥∥

CD�(1,1)
< 1 and VX

({x�}
)
�
. For � > 0 fixed and for each � = 0, . . . , k, there exists a
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function f� ∈ H1
(
D�, X
)

with
∥∥f ∥∥H1 �1 and (1 + �)f ′

�(0) = x�. Let now

�(z) = 1

k + 1

k∑
�=0

f�(z)

and 
j (t) = VXj

({
f�(e

it )
})

for t ∈ I�
j (j = 0, 1). Then

	j

(

j (t)
)
�1 − ∥∥�(eit )

∥∥
j

(2.1)

for t ∈ I�
j (j = 0, 1). By (1.6) and Lemma 2.1, we have

1

1 + �

∥∥∥∥∥ 1

k + 1

k∑
�=0

x�

∥∥∥∥∥
X

���,1

(
1

2�(1 − �)

∫
I �

0

∥∥�(eit )
∥∥

0 dt,
1

2��

∫
I �

1

∥∥�(eit )
∥∥

1 dt

)
, (2.2)

and



(1 + �)k
�VX

({
f ′

�(0)
})

���,1

⎛⎝( 1

2�(1 − �)

∫
I �

0


0(t) dt

)1/k

,

(
1

2��

∫
I �

1


1(t) dt

)1/k
⎞⎠k

. (2.3)

(i) If X0 is k-UR, then by (2.3) and by the estimate


1(t) = VX1

({
f�(e

it )
})

�(k + 1)(k+1)/2 = ak for t ∈ I�
1 ,

we have




(1 + �)k
� ��,1

⎛⎝( 1

2�(1 − �)

∫
I �

0


0(t) dt

)1/k

, a
1/k
k

⎞⎠k

� a
�1
k

(
1

2�(1 − �)

∫
I �

0


0(t) dt

)1−�1

.

This, combined with (2.1) and (2.2), yields that∥∥∥∥∥ 1

k + 1

k∑
�=0

x�

∥∥∥∥∥
X

� (1 + �)��,1

(
1

2�(1 − �)

∫
I �

0

∥∥�(eit )
∥∥

0 dt, 1

)

� (1 + �)��,1

(
1 − 	0

(
1

2�(1 − �)

∫
I �

0


0(t) dt

)
, 1

)

� (1 + �)��,1

(
1 − 	0

((
a

−�1
k (1 + �)−k


)1/(1−�1)
)
, 1

)
� (1 + �)

(
1 − 	0

((
a

−�1
k (1 + �)−k

)

1/(1−�1)

))1−�1

.
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Consequently,

1 −
(

1 − 	0

((
a

−�1
k 

)1/(1−�1)

))1−�1
�1 −
∥∥∥∥ 1

k + 1

k∑
�=0

x�

∥∥∥∥
X

by letting � → 0, and hence 	X(
) � 1 −
(

1 − 	0
(

1/(1−�1)

))1−�1
.

(ii) If both X0 and X1 are k-UR, then both 	−1
0 and 	−1

1 are concave functions. Let us now
choose

� = 	−1
0 , 
 = 	−1

1 , s = 1

2�(1 − �)

∫
I �

0

∥∥�(eit )
∥∥

0 dt,

t = 1

2��

∫
I �

1

∥∥�(eit )
∥∥

1 dt and u = 1

1 + �

∥∥∥∥ 1

k + 1

k∑
�=0

x�

∥∥∥∥
X

.

Observe that




(1 + �)k
� ��,1

⎛⎝( 1

2�(1 − �)

∫
I �

0

	−1
0

(
1 − ∥∥�(eit )

∥∥
0

)
dt

)1/k

,

(
1

2��

∫
I �

1

	−1
1

(
1 − ∥∥�(eit )

∥∥
1

)
dt

)1/k
⎞⎠k

by (2.1) and (2.3). This, together with Jensen’s inequality, Lemma 2.2 and (2.2), yields that




(1 + �)k
���,1
(
�(1 − s)1/k, 
(1 − t)1/k

)k �c ��,1
(
�(1 − u)1/k, 
(1 − u)1/k

)k
.

That is,


�c (1 + �)k��,1

⎛⎝	−1
0

(
1 − 1

1 + �

∥∥∥∥∥ 1

k + 1

k∑
�=0

x�

∥∥∥∥∥
X

)1/k

,

	−1
1

(
1 − 1

1 + �

∥∥∥∥∥ 1

k + 1

k∑
�=0

x�

∥∥∥∥∥
X

)1/k
⎞⎠k

.

It gives that 
�c ��,1

(
	−1

0

(
	X(
)
)1/k

, 	−1
1

(
	X(
)
)1/k
)k

, and hence

	−1
X (
)�c ��,1

(
	−1

0 (
)1/k, 	−1
1 (
)1/k

)k
.

Therefore, we obtain 	X �
(
��,1

((
	−1

0

)1/k
,
(
	−1

1

)1/k
)k)−1

. �

In the following example, we estimate the modulus of k-rotundity of some concrete function
spaces.
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Example. Let (�, �) be a complete �-finite measure space such that L2 = L2(�, �) is an infinite
dimensional Hilbert space. Then, by [10, Example 3.13],

	(k)

L2 (
) = 1 −
(

1 − k

(k + 1)1+1/k

2/k

)1/2

� k

(k + 1)1+1/k

2/k.

Recall that, for p > 2 and � = 1 − 2
/
p,

Lp = Lp(�, �) = C�
(L2(�, �), L∞(�, �)

)
isometrically. This implies that

	(k)

Lp (
) � 	(k)

L2

(

1/(1−�)

) = 	(k)

L2

(

p/2) � 
p/k

by [11, Theorem 2]. Let now 2�p0 < p1 < ∞ with 1
/
q = 1
/
p0 − 1
/
p1, and let ��,1 be the

function defined on R+ by

�−1
�,1(t) = t1/p0��,1

(
t−1/q
)
.

If we denote by L��,1 = L��,1(�, �) the corresponding Orlicz space over (�, �) equipped with
the Luxemberg norm, then by [6, Remark 4.8], we have

L��,1(�, �) = CD�(1,1)

(Lp0(�, �), Lp1(�, �)
)

isomorphically. We may apply Proposition 2.1 on

X = CD�(1,1)

(Lp0(�, �), Lp1(�, �)
)
,

and hence obtain(
	(k)
X (
)
)−1 ≺ ��,1

((
	(k)

Lp0

)−1
(
)1/k,

(
	(k)

Lp1

)−1
(
)1/k
)k

≺ ��,1
(

1/p0 , 
1/p1

)k = �−1
�,1(
)

k.

Therefore, 	(k)
X (
) � ��,1

(

1/k
)
.

Let 0 < �0, �1, � < 1 with �0 < � < �1 and � = (1 − �)�0 + ��1. If we apply Proposition 2.1
on the space

C�(−n)

(
C�0(−1)

(
X
)
, C�1(−1)

(
X
))

inductively, then together with reiteration (1.3), we have

Proposition 2.2. If X0 or X1 is k-UR and if n�1, then X = C�(−n)

(
X
)

is equivalent to a k-UR
space.

By a slight modification on the proof of [4, Theorem 2.1], we obtain the following result
concerning the characteristic of k-convexity.

Proposition 2.3. For 0 < � < 1, let 
̂(k)

� be the characteristic of k-convexity of the complex

interpolation space C�
(
X
)
. Then


̂(k)

� �
(

̂(k)
X0

)1−�(
̂(k)
X1

)�
.
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3. On measure of weak noncompactness and some spectral inequalities for operators

In this section, let us first consider the measure of weak noncompactness for bounded linear
operators given by Kryczka and Prus [9], and apply their idea on the C�(±n)-methods. Let X
be a Banach space and let

(
x�
)
��1 be a sequence in X. Vectors u1, u2 in X are said to be a

pair of successive convex combinations (scc for short) for
(
x�
)
� if u1 ∈ conv

({
x�
}k
�=1

)
and

u2 ∈ conv
({

x�
}∞
�=k+1

)
for some integer k�1. By the convex separation of

(
x�
)
�, denoted by

csep
((

x�
)
�

)
, we mean

csep
((

x�
)
�

)
= inf
{ ∥∥u1 − u2

∥∥
X

∣∣∣ u1, u2 is a pair of scc for
(
x�
)
�

}
.

For a nonempty and bounded subset A of X, we define the measure of weak noncompactness of
A by

�(A) = sup
{

csep
((

x�
)
�

) ∣∣∣ (x�
)
� ⊆ conv A

}
.

For Banach spaces X and Y, let UX be the open unit ball of X and let T ∈ B(X, Y ). We define the
measure of weak noncompactness of operator T by

�(T ) = �
(
T (UX)

)
.

Proposition 3.1. Let T ∈ B(X, Y
)
. Then

��(±n)(T )�c ��,n

(
�0(T ), �1(T )

)
,

where ��(±n)(T ) and �j (T ) (j = 0, 1) are measures of weak noncompactness for operators
T : C�(±n)

(
X
)→ C�(±n)

(
Y
)

and T : Xj → Yj (j = 0, 1), respectively; and c is a constant only
depending on � and n. Consequently, if T : X0 → Y0 or T : X1 → Y1 is weakly compact, then

T : C�(±n)

(
X
)→ C�(±n)

(
Y
)

is also weakly compact.

Proof. By equivalence (1.4), we consider spaces

X = CD�(n,∞)

(
X
)

and Y = CD�(n,1)

(
Y
)
.

For j = 0, 1, let Cj [Xj ] be the space of all continuous functions f : I�
j → Xj with the norm∥∥f ∥∥Cj

= max
t∈I �

j
|f (t)|, and let L1

j [Xj ] be the space of all measurable functions f : I�
j → Xj

such that∥∥f ∥∥L1
0

= 1

2�(1 − �)

∫
I �

0

∥∥f (t)
∥∥

0 dt < ∞ for f ∈ L1
0[X0]

and ∥∥f ∥∥L1
1

= 1

2��

∫
I �

1

∥∥f (t)
∥∥

1 dt < ∞ for f ∈ L1
1[X1].
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The operator T ∈ B(X, Y
)

induces operators T̃j ∈ B(Cj [Xj ], L1
j [Yj ]
)
(j = 0, 1) by the formula(

T̃j f
)
(t) = T

(
f (t)
)

for f ∈ Cj [Xj ].
According to [9, Theorem 3.3] (with some trivial modifications), we have

�
(
T̃j

) = �j (T ) (j = 0, 1). (3.1)

Now let 
 > 0 be fixed and let
(
y�
)
� be a sequence in T

(
UX

)
. For each �, ∃ x� ∈ UX with y� = T x�

and ∃f� ∈ A�
(
D, X
)

such that
∥∥f�
∥∥A�

< 1 and x� = f̂�(n). Then g� = Tf� ∈ H1
�

(
D, Y
)

and

y� = ĝ�(n). Let gj,� denote the function t �→ g�(e
it ) for t ∈ I �

j (j = 0, 1). Then gj,� ∈ L1
j [Xj ].

A similar argument in the proof of [9, Theorem 4.1] shows that one can find a sequence of integers
0 = k1 < k2 < · · · and nonnegative numbers ��

l , for which
∑k�+1

l=k�+1 ��
l = 1, and the sequence

of functions
(
hj,�
)
� (j = 0, 1) given by

hj,� =
k�+1∑

l=k�+1

��
l gj,l

satisfying∥∥hj,k − hj,m

∥∥L1
j
�csep
(
hj,�
)
� + 
. (3.2)

Let h� = ∑k�+1
l=k�+1 ��

l gl . Then ĥ�(k) = ∑k�+1
l=k�+1 ��

l ĝl(k) for 0�k�n. Combining (1.6), (1.7),
(3.1) and (3.2), we obtain

csep
((

y�
)
�

)
� csep

((
ĥ�(n)
)
�

)
�
∥∥ĥ1(n) − ĥ2(n)

∥∥
X

� c ��,n

(∥∥h0,1 − h0,2
∥∥L1

0
,
∥∥h1,1 − h1,2

∥∥L1
1

)
� c ��,n

(
csep
((

h0,�
)
�

)
+ 
, csep

((
h1,�
)
�

)
+ 


)
� c ��,n

(
�
(
T̃0
)+ 
, �

(
T̃1
)+ 

)
,

which implies that

csep
((

y�
)
�

)
�c ��,n

(
�0(T ) + 
, �1(T ) + 


)
.

The estimate for ��(n)(T ) follows by letting 
 → 0 and by taking the supremum on the left-hand
side of the previous inequality. �

Next we turn to some inequalities concerning the spectral capacity, spectral radius and essential
spectral radius of bounded linear operators under the C�(±n)-methods. These inequalities follow
from a spectral inclusion and some related results of the classical C�-methods, and the logarithmic
convex estimates with parameter � will be given. Let X be a Banach space, and let T ∈ B(X).
We denote by Sp (T , X), r(T , X) and re(T , X) the spectrum, the spectral radius and the essential
spectral radius of T, respectively. For a compact subset K of C, the capacity of K is define by

Cap K = inf
p

max
z∈K

|p(z)|1/deg p, (3.3)

where the infimum is taken over all polynomials p with the leading coefficient equal to 1.
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Proposition 3.2. For T ∈ B(X ) and � ∈ (0, 1), the inclusion

Sp
(
T , C�(±n)

(
X
)) ⊆ Sp

(
T , C�
(
X
))

(3.4)

holds. Consequently, we have

Cap Sp
(
T , C�(±n)

(
X
))

�Cap Sp
(
T , X0
)1−�Cap Sp

(
T , X1
)�

, (3.5)

r
(
T , C�(±n)

(
X
))

�r
(
T , X0
)1−�

r
(
T , X1
)�

, (3.6)

and

re

(
T , C�(±n)

(
X
))

�re
(
T , X0)

1−�re
(
T , X1
)�

. (3.7)

Proof. For inclusion (3.4), it is sufficient to show that, if T ∈ B(X ) such that T is invertible on
C�
(
X
)
, then T is invertible on C�(±n)

(
X
)
. We denote by T −1

� and T −1
�(±n)

the inverses of T on

C�
(
X
)

and C�(±n)

(
X
)
, respectively.According to [2, Theorem 4], there exists 
 > 0 such that, for∣∣�−�

∣∣ < 
, T is invertible on C�
(
X
)
, and T −1

� = T −1
� on �X. Now we choose 0 < �0, �1, � < 1

such that �0 < � < �1, �1 − �0 < 
 and � = (1 − �)�0 + ��1. Then

T −1
�j

= T −1
� (j = 0, 1)

on �X, and

C�(±n)

(
X
) = C�(±n)

(
C�0

(
X
)
, C�1

(
X
))

by reiteration (1.2). It turns out that T is invertible on C�(±n)

(
X
)

for which T −1
�(±n)

= T −1
� on �X.

By (3.3) and (3.4), we have r
(
T , C�(±n)

(
X
))

�r
(
T , C�
(
X
))

and

Cap Sp
(
T,C�(±n)

(
X
))

�Cap Sp
(
T , C�(n)

(
X
))

.

This, together with [1, Lemma 3.1] and [2, Corollary 7], yields inequalities (3.5) and (3.6).
For inequality (3.7), we fix an arbitrary 
 > 0, and put

rj = re
(
T , Xj ) + 
 and Kj = { z ∈ C

∣∣ |z|�rj
}

(j = 0, 1).

Then (
Sp
(
T , X0
)− K0

)
∪
(

Sp
(
T , X1
)− K1

)
= {�1, . . . , �l

}
is a finite set. Let now

c = sup

{ ∣∣∣�l
�=1(z − ��)

∣∣∣ ∣∣∣∣ |z|�r0 ∨ r1

}
,

and consider the polynomials fk(z) = zk�l
�=1(z − ��) for z ∈ C. By (3.6), we have

r
(
fk(t), C�(±n)

(
X
))

�r
(
fk(T ), X0

)1−�
r
(
fk(T ), X1

)� �c r
k(1−�)
0 rk�

1 .

Following the proof of [1, Theorem 3.3] word by word, we can complete the proof of (3.7). �
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Finally, we show by some example that the estimates in Proposition 3.2 cannot improved for
n = 1. Let F be an exact interpolation functor. As in [8, Definition 4.3], we denote qF to be the
spectral function of F in the following form:

qF (t) = sup
{ ∥∥T ∥∥

F(X),F (Y )

∣∣∣ ∥∥T ∥∥0 ∨
(∥∥T ∥∥1/t

)
�1
}
,

where X and Y are arbitrary Banach couples. The semi-exponents of qF are given by

�0(qF ) = lim
t→0

inf
log qF (t)

| log t | and �∞(qF ) = lim
t→∞ sup

log qF (t)

| log t | .

Example [8, Example 9.5]. For ��1, let �T be the circle in C with the center at origin and the
radius equal to �, and let W be the annulus

W = { z ∈ C
∣∣ 1� |z|�2

}
.

Let now X = H2
(W) be the Banach couple consisting of the Hilbert spaces L2(T, dt) and

L2(2T, dt) considered as subspaces of the dual of H2(W). Thus, �X = H2(W). Let T ∈ B(X )
be the multiplication operator given by

Tf (z) = zf (z)

for any analytic function f : W → C. Then

Sp
(
T , H2(W)

) = W, Sp
(
T , L2(�T)

) = �T

and

r
(
T , L2(�T)

) = re
(
T , L2(�T)

) = Cap Sp
(
T , L2(�T)

) = �

for 1���2. It is known that, if F = C�, then qF (t) = t�. If F = C�(±1), then qF = ��,1 by
(1.1) and [7, Remark 5.7]. A straightforward calculation shows that

�0(qF ) = �∞(qF ) = �

for F = C� or C�(±1). It turns out that

Sp
(
T , C�(±1)

(
X
)) = Sp

(
T , C�
(
X
))

by [8, Theorem 9.1]. More precisely, C�
(L2(T), L2(2T)

) = L2(2�T). Therefore, the equalities
in (3.5)–(3.7) hold true.
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